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1. Introduction

The “dictionary lookup” stage in a sophisticated natural-language system can involve
much more than simple information retricval. In text, the words that the system knows may
show up in heavily disguised form. Inflectional endings such as tense and plural markings may
be present; the addition of prefixes and suffixes may change part-of-speech and meaning in
systematic ways; in many languages words may have unreclated clitics attached. The addition
of prefixes, suffixes, and cndings is often accompanied by spelling changes as well; in English,
try+s becomes tries and dig+er becomes digger. The rules of spelling change can be rather
complex.

Superficially, it seems that word rccognition might potentially be complicated and dif-
ficult. This paper examines the guestion more formally by investigating the computational
characteristics of the “two-level” model of morphological processes (§2). Given the kinds of
constraints that can he encoded in the model, how difficult can it be to translate between
lexical and surface forms? Although the usc of finite-state machinery in the two-level model
gives it the appearance of computational cfficiency, the model itsclf does not guarantee ef-
ficient processing. Taking the KIMMO system (Karttunen, 1983) for concretencss, sections 4
and 6 will show that the general problem of mapping between lexical and surface forms in two-
level systems is computationally difficult in the worst case. I null characters are excluded,
the problem is N P-complete. If null characters are completely unrestricted, the problem is
PSPACE-complete and thus probably even harder in the worst case. The fundamental diffi-
culty of the problems does not scem to be a precompilation effect (§5).

1.1. Morphological analysis -

The word-level processing carried out by a natural-language system is formally a type of
morphological analysis, concerned with recovering the internal structures of input words. For
example, singing can be recognized as an inflected form of the verb sing, while unhappy
can be analyred as un+happy. However, the morphological component cannot break words up
blindly; dcspite appcarances, duckling is not the -ing form of a verh. The morphological
analyzer must know the basic words of the language in addition to the prefixes and suffixes. In
fact, analysis must be guided by more specific constraints as well. Not every word can combine
with every affix; it would be an error to analyze unit as un+tit or beer as beter (compare
doer). :

The number of inflected forms of a given word is smaller in English than in many other
languages. As a result, for a system with small scope it often suffices to trivialize morphological
analysis by listing all inflected forms in the dictionary directly. The trivial approach ia not
feasible for heavily inflected languages such as Finnish, in which a word can have thousands
of possible forms. In such cases, both practicality and clegunce require a more systematic
treatient in terms of inflectional endings, mood and tense markers, clitics, and so forth.

The problem of recovering the internal structures of words can take an extreme form
in languages that allow productive compounding. Kay and Kaplan (1982) illustrate such a
situation with the German word Lebensversicherungsgesellschaftsangestellter, which
means life insurance company emplogee. An exhanstive dictionary is impractical when such
free compounding is possible.
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ol 1.2. Spelling changes

‘

::! Besides knowing the stems, affixes, and co-occurrence restrictions of a language, a success-
ful morphological analyzer must take into account the spelling changes that often accompany

o the addition of suffixes and similar elements.! The program must expect love+ing to appear

;s:, as loving, fly+s as flies, lie+ing as 1lying, and big+er as bigger. Its knowledge must be

}:.: sufficiently sophisticated to distinguish such surface formns as hopped (= hop+ed) and hoped

'l: (= hope+ed). Crass-linguistically, spclling-change proccsses may span either a limited or a

h more extended range of characters (§1.2.1), and the material that triggers a change may occur
either before or after the character that is affected (§1.2.2). Complex copying processes (§1.2.4)

,';.;0 may be found in addition to simipler, more specific changes.

1

W

" 1.2.1. Local and long-distance processes

_vsl

n

N The spelling changes associated with the addition of English suffixcs are local in the sense

? that they do not affect letters far away from the word -suffix boundary. However, there are

) N processes in other languagea that operate over longer distances. The spelling of Turkish suffixes

i is systematically affected by vowel harmony processes, which require the vowels in a word to

o agree in certain respects.? The vowels that appear in a typical suffix are not completely

: determined by the suffix, but are determined in part by the rules of vowel harmony. The suffix

* that Underhill (1976) writes as -sInIz may appear in an actual word as -siniz, -sunuz, - @

. ’ siiniiz, or -s1n1z depending on the preceding vowel. Turkish words may contain large numbers

0'5 of suffixcs, and the cffects of vowel harmony can propagate for long distances. (Hungarian
suffixes display similar changes.)

'

[

: 1.2.2. Left and right context

s Local spelling changes often depend on right context as well as left context; for instance,

'J: carry+ed changes y to i but carry+ing retains y. Less commonly, long-distance changes can

5.. also be triggered by material to the right.® Verb stems in the Australian language Warlpiri

:'t. display a regressive change of i to u triggered by a tense suffix containing a nasal u; thus the

40',‘ imperative form of throw is kiji-ka, but the past-tensc form is kuju-rnu (Nash, 1980:84).

. As illustrated, this harmony process can affect more than one i in the verb stem. It can also

‘,2 propagate through the element -rni that can appear between the verb stem and the tense

:" > 18pelliug-change procesees actually represent a superficial amalgam of phonological changes and ertho-

AN | . graphic conventions. In this paper, these two awpects of spelling changes will not be distinguished. The

»ﬂ:f }' e phonology and the orthography of a language do not Lave the wamc status for linguistics, but the ditferences

i‘,f ' .8 are not relevant for present purposes. Note also that it is the surface spelliug of a word that will be presented

= i to a progriun that analyses written text.

L : Far details of this proccss, sce Underhill (1976), Clements and Seser (1982), and nurnerous references cited

AL therein.

$ b "Many rurrent aalyses of vowel harmony take it to be a fundamentally nondirectional process, even in

."‘q LA languages in which it always appears to operate from left to right. For example, it appears se thongh the

influence of root vowels on aftix vowels always proceeds from kft to right in Turkish, but this is because
Turkish lacks prefixes. Clements and Sexer (1082:246f) discuss a procems of colloguial Turkieh iu which a

‘q:’ : vowe] in inserted between the initial letters of certiin words. The choice of vowel is determined by the usual

. IR ’ barmony ruler of Turkish, but operating from right to left in this case. Sec also Poscr (1082). -
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ending. (Warlpiri also has another long-distance harmony process, which operates from right
to left.)

Other languages provide further examples of long-distance changes that arc conditioned
by material to the right. Kay and Kaplan (1982) mention a vowcl-change process in Icelandic
that causes vowels in the middle of a word to depend on the vowels in a following suffix. The
inflectional systemn of German also involves vowel changes. I'oser (1982:131ff) discuases an
extreme example of long-distance right-to-left harmony that occurs in the language Chumash.
The process that he describes changes 8 to 8 throughout the cutire word when an B occurs in
a suffix; thus s+lu+sisin+vad (I+all+grow awry+past) becomes BlubiBinwaB (st is all grown
awry).

1.2.3. Right context and processing ambiguity

The existence of changes that depend on right context implies that the lexical-surface
correspondence for a particular character cannot always be determined when the character is
first seen in a left-to-right scan. However, right context is not crucial for the occurrence of
this difficulty. The same kind of local ambiguity can arise even when spelling changes do not
depend on right context.

Suppose we were to remove the dependence of the y-to-i change on right context by con-
sidering a rule system in which y always changes to i after p.¢ There could still be uncertainty
about how analysis should procced. A surface string beginning spi... could correspond to a
lexical string spy... as in epies, but it could equally well correspond to spi... as in spider
or spiel. In gencral, analysis may proceed sevcral characters beyond a choice point before it
becomes apparent which choice is correct. This is especially true with a large system vocabu-
lary: in the above example, a system that did not know any spi... words could immediately
rule out spi... in favor of spy..., but a system with more complete coverage would have to
look further into the input before it could identify the correct choice.

1.2.4. Reduplication

Some languages display a kind of change called reduplication that often does not lend
itself to analysis by the kinds of mechanisms that are appropriate for the other processes that
have been mentioned here. Reduplication processes involve the copying of consonants, vowels,
syllables, roots, or other subunits of words. Nash (1980:136ff) describes a reduplication process
in Warlpiri that copies the first two syllablex of a verb and has various semantic cffccts. For
example, he cites the sentence

pirli ka parnta-parnta-rri-nja-mpa ya-ni
hill PRES crouch-REDUP INF-across go-NONPAST
The mountain eztends in a seriea of humpa,

*If y always changes to 1 after p. what justification could there be for sayiug that spy and not spi is the
correct underlyiug formn? In this trivial constructed example. there in none. In an actual language, there could
be evidence frotn a variety of sources: suffixes beginning with y: harmony processcs: rules that create or destroy
the p that triggers the change; rules that are triggered by the y before it changes; and so forth.
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W : in which the verb stem parntarri- has undergone reduplication. Licber’s (1980:234fF) dis-
\ cussion of scveral reduplication processes in the language Tagalog provides other examples.
One Tagalog reduplication process copies the first consonant and vowel of the stem, making
. the copied vowel short; another is similar, but makes the copicd vowel long; a third process
,’; copies the first syllable and part or all of the second, lengthening the copied vowel of the second
4 syllable. See also McCarthy’s (1982:193f) treatment of reduplication in Classical Arabic.®
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to the standard orthograpby (Hile, 1082:222).

SMcCarthy's treatmeut of Arabic is of theoretical interest for at least two reasons: it helps illnminate the
I\ nature of Linguistic representations, and it shows a way to derive many characteristics of Arabic reduplication
from nniversal lingnistic principles rather than langnage-particnlar stipulations.

*+
: 5The byphens in the Warlpiri examples are inserted as an analytical aid for the reader, and do not conform
»
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2. Two-Level Morphology

Given a description of the root forms, the combinatory pattcrus, and the spelling-change
rules of a language, the morphological analysis task is well-defined in an abstract scnse. How-
ever, a practical morphological analyzer also needs an efficient way of putting its linguistic
knowledge to use in actual processing. The KIMMO system described by Karttunen (1983)
is attractive for this purpose. KIMMO is an implementation of the “two-level” model of mor-
phological analysis that Kimmo Koskennicmi proposed and developed in his Ph.D. thesis.”
Spelling-change rules are encoded in a finite-state automaton component, while roots and af-
fixes arc listed with their co-occurrence restrictions in a dictionary component. The focus
here is on the automaton component. (Reduplication processes find no easy treatment in the
KIMMO system, and will henceforth be ignored.)

2.1. The Automaton Component

The two-level model is concerned with the representation of a word at two distinct levels,
the lezical or dictionary level and the surface level. At the surface level, words are represented
as they might show up in text. At the lexical level, words consist of sequences of stems,
affixes, diacritics, and boundary markers that have been pasted together without spelling
changes. Thus Karttunen and Wittenburg (1983) represent the surface form tries as try+s
at the lexical level. Similarly, the Warlpiri surface form kijika might be represented at the
lexical level as k1§I-ka, where I is a special lexical character that can surface as either 1 or
u according to harmony rules.

32.1.1. Expressing Spelling Changes as Two-Level Automata

A spelling-change rule in the two-level model is expressed as a constraint on the corre-
spondence between lexical and surface strings. For example, consider a simplified “Y-Change”
process that changes y to i before adding es. Y-Change can be cxpressed in the two-level
mode] as a constraint on the appearance of the lexical-surface pairs y/y and y/i. Lexical y
must correspond to surface i rather than surface y when it occurs before lexical +8, which will
itsclf come out as surface es due to the operation of other constraints.

Each constraint is encoded as a finite-state machine with two scanning heads that move
along the lexical and surface atrings in parallel. The machine starts out in state 1, and at each
step of its operation, it changes state based on its current state and the pair of characters it J
is scanning. The automaton that encodes the Y-Change constraint would be described by the

7Unijversity of Helsinki, Finland, cira Fall 1083,
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following state table:
"Y-Change"” 6 &

yy + 8 = (lezical characters)
i vy =8 = (surface characters)
state 1: 2 4 1 1 1 (normal state)
state 2. 0 0 3 0 O (require +s)
state 3. 0 0 0 1 O (require 8)
state 4: 2 4 65 1 1 (forbid +s)
state 5: 2 4 1 0 1 (Jorbid s)

In this notation, taken from Karttunen (1983) following Koskenniemi, = is a certain kind of
wildcard character. The use of : rather than . after the state-nmunber on some lines indicates
that the : states are final statea. which will accept end-of-input. In order to handle insertion or
deletion, it is also possible to have a null character 0 on one side of a pair,® but the possibility
of nulls will not be given full consideration until section 6.

In processing the lexical-surface string pair try+s/tries, the automaton would run
through the state sequence 1,1,1,2,3,1 and accept the correspondence. In contrast, with the
string pair try+s/tryes it would block on 8/s after the state sequence 1,1,1,4,6 because the
entry for 8/s in state b is zero. With the pair try/tri it would not block with any zero
entries, but would still reject the pair because it would end up in state 2, which is designated
as non-final.

These examples illustrate how the Y-Change automaton implements dependence on the
right context +s. The automaton will accept either of the correspondences y/i and y/y, but
if it processes the y/i correspondence, it will enter a sequence of states that will ultimately
block unless the y/i pair is followed by the appropriate lexical context +s. The right context
for a vowel harmony process might seem more difficult to encode because it may be necessary
to ignore several intervening consonants, but such a situation actually prescnts no problem at
all. An automaton state can easily ignore irrelevant characters by looping back to itself.

2.1.2. Multiple Spelling-Change Processes

A language will generally exhibit several different spelling-change processes; for example,
Karttunen (1983:177) mentions that Koskenniemi’s analysis of Finnish uses 21 rules. By and
large, these separate processes can be encoded as separate automata in the KIMMO system.
In actual processing. the automata that express various spelling-change counstraints will all
inspeet the lexical-surface correspondence in parallel. The correspondence will be accepted
only if every automaton accepts it — that is, if it satisfies every constraint.? DBecause the
automata are connected in parallel rather than in series, there are no “feeding” relationships
between two-level automata.!” Figure 1 illustrates the paralicl arrangement of the KIMMO

*The actnal KIMMO system of Karttunen (1983) does not allow null characters at the lexical level, but the
omission is inessential (Karttunen, p.c.).
If il characters are allowed, the interpretation of “satisfying every constraint™ takes on a certain subtlety.
See section 6.
191t in a theoretical claitn of the two-level framework that intermsediate levels of representation and “feeding”
relationships are not uccessary - that two levels suflice, in other words. Scries councection of the automats
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h Figure 1: The automaton component of the KIMMO systom consists of several two-headed finite-state
g automata that inspect the lexical-surface correspondence in parallel. Each automaton imposes some
3 constraint on the correspondence. The automnata move together from left to right. (From Kart-
" tunen, 1983:176.)

\
)
o .
b
4 o automata. A set of several antomata can also be compiled into a single large automaton that
. ﬁb will run faster than the original set, though its size may be prohibitive (:176f).
2.2. The Dictionary Component
1 The dictionary component of the KIMMO system is divided into sections called lezicons,
which are all ultimately reachable from a distinguished root lexicon. In the dictionary-level
“ processing for words such as singing, KIMMO first locates the lexical form sing in the root
lexicon. The mechanism for indicating co-occurrence restrictions involves listing a set of con-
N tinuation lexicons for each entry, and in this casc one possibility will be a lexicon that contains
- +ing. In the actual opcration of the KIMMO systemn, dictionary processing is efficiently inter-
N leaved with the operation of the automata in such a way that the two components mutually
i constrain their operations.
’ The continuation-class mechanism that the KIMMO dictionary uses to encode co-occurrence
o restrictions among roots and affixes has only finite-state power; cach lexicon corresponds to a
. state in a transition network. As many people have noticed {(e.g. Karttunen, 1983:180; Kart-
: tunen and Wittenburg. 1983:222f), such a design makes it difficult or impossible to express
. some morphological constraints. In the future, the KIMMO dictionary component will almost
. would imply the existence of intermediate representation levels at the interface between antomata. Beyond the
question of computational efficiency. the theoretical claime of the two-level model-will not be evalnated here.
S Poxsible argnments against them could involve (a) rule orderings with depth ~ 1. (h) particular analyses in
» which the availability of only two levels leads to redundancy in the antoiuata, and (c) multi-part alternative
L4 represeutations (e.g. from autosegmental theory) that adlow a more itluminating description of various lingnistic
$ processes. Que poasible argniuent for them could involve the multiplicity of possibilities for rule ordering in a
1} model with mtermediate derivational ateps.
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certainly be redesigned. :

The automaton component rather thau the dictionary component of the KIMMO system is
the main object of attention here, and little more will be said about the dictionary component
until section 7.1.

2.3. Generation and Recognition

A KIMMO system does not particularly lean toward either generating or recognizing the
words of a language. Since the machines of the automaton component just express constraints
on permissible lexical-surface correspondences, they can serve equally well to dctermine the
lexical form of a surface word (recognition) or to map a lexical stem with affixes into the
proper surface form (generation). The only major difference is whether. the process is driven
by the surface or lexical form. However, the recognition algorithm is slightly more complicated
because it uses the lexicon as well as the automata to constrain the analysis of an input word.
{As Karttunen (1983:184) notes, it would require only a simple change to run the recognizer
without the constraints of the stem lexicon. Such a mode of operation would be useful for
stripping recognizable suffixes from unfamiliar roots.)
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- 3. The Seeds of Complexity

The use of finite-state machinery gives the two-level model the appcarance of computa-
tional efficiency, but in the worst case a KIMMO generator or recognizer has a lot of work
. to do. This section probes possible sources of complexity, while the next section will exploit
f them in mathematical reductions that answer the question of how hard KIMMO generation

L]

and recognition can be in the general case.

" 3.1. The Lure of the Finite—State

At first glance, the KIMMO system raises hopes of unfailing efficiency. Both recognition
and gencration seem to be a matter of stepping finite-state machines through the input from
left to right, a process that takes only a quick array rcference or so per character. Any
nondeterminism that might arise causes little initial concern, since methods of determinizing
finite-state machines are well-known. Lexical lookup can also be done quickly, character by
character, interleaved with the speedy left-to-right progress of the automata:

‘:;. LS

T

Gty b el

It is a common technique to represent lexicons as letter trees because it minimizes
the time spent on searching for the right entry. The recognizer only makes a single
left-to-right pass as it homes in on its target in the lexicon. (Karttunen, 1983:178)

The fundamental efficiency of finite-state nachines promises to make the speed of KIMMO
processing for a language largely independent of the nature of the constraints that the automata

53

o encode:

. -\

Lo The most important technical feature of Koskennicmi's and our implementation of

5 the Two-level model is that morphological rules are represented in the processor as

b automata, more specifically, as finite state transducers .... Onc important conse-
. quence of compiling {the grammar rules into automata) is that the complexity of the

- linguistic description of a language has no significant effect on the spced at which

! the forms of that language can be recognized or generated. This is due to the fact

) ; that finite state machines are very fast to operate because of their simplicity .... Al-

.: though Finnish, for example, is morphologically a much more complicated language

b than English, therc is no difference of the same magnitude in the processing times
for the two languages .... [This fact] has some psycholingnistic intcrest because of

& the common sense observation that we talk about “simple” and “complex™ languages

i3 but not about “fast”™ and “slow” ones. (:166f)

:&. In order for the automaton-based two-level model to be of psycholinguistic interest in this
- way, it must be the model itself that wipes out processing difficulty, rather than some acci-
‘ dental property of the constraints that the automata encode. In much the same vein, Lind-
) stedt (1984:171) remarks following Koskenuiemi that “it is psycholinguistically interesting to
::: note that the {two-level) rules are equivalent to such computationadly simple and effective [i.e.
“ cfficient] devices,” again picking out the finite-state machinery as the factor responsible for
¥, computational cfficiency.
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3.2. Sample Recognizer Behavior

In assessing the computational characteristics of the KIMMO processing algorithms, it is
Jogical to begin with an example. Figure 2 shows the operations that a KIMMO recognizer
for English gocs through when it analyzes the word wpiel. From inspecting the sequence of
lexical forms that are considered, it is clear that the recognizer does more than just gliding
from left to right through the string.

For example, at step 7 the recognizer is considering the lexical string spy+, y surfacing as
i and + as e, under the theory that the input word mjght be a plural form of the noun spy —
spies or spies’, that is. At step 9 that analysis has failed to pan out and spy+ is considered
again. this time with + coming out null on the surface instead of matching the input e. At
step 11 the recognizer has dropped back to the form spy that it was considering at step 4, this
time taking the root as a verb. All of the spy possibilities ultimatcly fail, and at step 52 the
recognizer finally tries spi instead, repudiating the incorrect choice that it made in step 3. In
step 53 it assumes that the e in the lexical form spie... might have been deleted, but this
idea soon founders. Finally, in step 59 it finds the correct lexical entry spiel.

3.3. Sources of Runtime Complexity

Traces of recognizer operation reveal several factors that combine to determine the overall
compnutational difficulty of an analysis. The recognizer must run the finite-state machines of
the automaton component and descend the letter trees that make up a lexicon, it must decide

which suffix lexicon to explore after finding & root, and it must discover the correct lexical-
surface correspondence.

3.3.1. Stepping through the automata and the lexicon

First of all, some of the recognizer’s activitics are concerned with the mechanical operation
of the automata and the letter trees of the lexicon. Running the automata is expected to
be fast; there arc many well-known fast implementations of finite-state machines, differing
somewhat in their time and space requirements. Descending a letter tree should also be easy,
in any of its common implementations.

3.3.2. Choosing among alternative lexicons

Sccond, the recognizer often makes unfortunate choices about the path that it should
follow through the collection of lexicons in the dictionary component. Quite a few nodes in
the scarch tree of Figure 2 represent choices among alternative lexicons (LLL). For example,
at step 11 the recognizer may scarch any of several lexicons next: the lexicon I that encodes
the fact that the present indicative of a verb may have no added ending, the lexicon AG that

contains the agentive ending +er, or one of several other lexicons that contain +ed and other
inflectional endings.

The search for a path through the suffix lexicons of the dictionary component can take
considerable time in the current KIMMO implementation. However, such wandering can be

10
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Recognizing surface form "spiel”.

s 1.4,1.2,1,1
sp 1.1,1,2,1,1
3 spy 1,3.4,3,1.1
4 “spy” ends, new lexicon N
5 "0" ends, new lexicon C1 mosdsocdscodLLLALLLHINT4
6 spy XXX extra input
7(8) spy+ 1.6,16,4,1,1 ']'*“"*
8 spy+ XXX g
9 (8) spy+ 1.6.1,4,1,1 Mo
10 spy+ XXX +111+
11 (4) “spy" ends, new lexicon I LiteTTI
12 spy XXX extra input LLL+-==+XXX+
13 (4) ‘“spy" ends. new lexicon P3 |
14 spy+ 1.6,1,4,1,1 ~e=+ XXX+
15 spy+ XXX
16 (14) spy+ 1.56,16,4,1,1 LLL+===dm-ca XXX+
17 spy+ XXX
18 (4) “spy" ends, new lexicon PS oo+ XXKe
19 spy+ 1,6,1,4,1,1 -
:0 spy+e 1,1,1,1,4,1 +AAR+
1 spyte xxx 0l A peempane
22 (20) spy+e 1,1,4,1,3,1 LLLe=smenomeXkXe
23 spyte Xxx e XXX+
24 (19) spy+ 1,6.16,4,1.1
25 spy+e XXX Epenthesis ~==+AAA+
26 (4) “spy" ends, new lexicon PP
27 spy+ 1,6.1,4,1,1 LLL4===+XXX+
28 spy+e 1,1,1,1,4,1
29 spy+e XXX T TARNK+
30 (28) spy+e i,1,4,0,30 v X
31 spy+e XXX LLL$---+ i +XXX+
32 (27) spy+ 1,6,18,4,1,1 ———aXAX+
33 spy+e XXX Epenthesis
34 (4) “spy" ends, new lexicon PR ~==+AAA+
35 spy+ 1,6,1,4,1,1
36 spy+ XXX LLL#==-+XKX+
37 (35) spy+ 1,6,16,4,1,1 |
38 spy+ XXX ===eXXX¢
39 (4) “spy” ends, new lexicon AG
40 spy+ 1,6,1,4,1,1 """i'*"x’
ph shy+e xix B T T
43 (41) spy+e 1.1,4.1,3,1 .e-
44 spy+e XXX +XKXs
45 (40) spy+ 1,6,16,4,1,1
46 spy+e XXX Epenthesis
47 (4) "“spy" ends, n2w lex{icon AB
:8 spy+ 1,6,1,4,1,1
9 spy+ XXX Key to tree nodes:
50 (48) spy+ 1,6,16,4,1.1 y o
51 spy+ XXX ~--  normal traversa?l
52 (3) spi 1.1,4,1,2,6 . LLL  new lexicon
63 spie 1,1,16,1.6,1 AAA  blocking by automata
54 spie XXX XXX  no lexical-surface pairs
65 (53) spie 1,1,16,1.56.6 compatible with surface
56 spiel 1,1,18,2,1,1 char and dictionary
67 "spiel” ends, new lexicon N 111 blocking by leftover input
58 0" ends, new lexicon C1 see analysis found
59 "spiel” se* result
60 (58) spiel+ 1,1,16,1,1,1
61 spiel+ XXX

(("spiel™ (N $SG)))

Figure 2: These traces show the steps that the KIMMO recogniser for English gocs through while
analyzing the surface form spiel. Each line of the table on the lcft shows the lexical string and
automaton states at the end of a step. If some antomaton blocked. the automaton states are replaced
by an XXX entry. An XXX entry with no antowaton name indicates that the lexical string could not
be extended because the surfuce character and lexical letter tree together ruled out all feasible pairs.
After an XXX or *s# entry. the recognizer backtracks and picks up from a previous choice point,
indicated by the parenthesized step nmnber before the lexical string. The tree on the right depicts
the search graphically. reading from left to right and top to bottom with vertical bars linking the
choices at each choice puint. The figures were generated with a KIMMO snplenientation written in an
augmented version of MACLISP based initially on Karttuncn's (1083:1824f) algorithm description; the
dictionary and antomaton components for English were taken from Karttunen and Wittenburg (1983)
with minor changes. This implementation searches depthi-first as Karttunen's does, but explores the
alternatives at a given depth in a different order from Karttunen's.
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Recognizing surface form "spiel”.

s 1,4,1,2,1,1

¥ 1
) 2 p 1.1,1,2,1,1
Lyl 3 spy 1,3.4,3,1,1
N 4 *spy" ends, new lexicon (/N)
o 6 "0" ends, new lexicon (C1)
e
sy 6 spy XXX extra input
’ 7 (5) spy+ 1,5.16,4,1,1 conpomadeoo-dlLL+LLL*III+
" 8 spy+ XXX I
':'I: 9 (5) spy+ 1,6,1,4,1,1 --=+XXX+
’,\ 10 spy+ xXX |
& 11 (4) “spy” ends, new lexicon (/V) ~==+XXX+
o 12 spy XXX extra input
o 13 + spy+ 1,6,1,4,1,1 L L+l}1*
‘o 14 spy+e 1,1,1,1,4,1
s 15 spy+e XXX R
16 (14) spy+e 1,1,4,1,3,1 ———
. 17 spy+e XXX +XXK+
rod 18 (12) spy+ 1,5,16,4,1,1 -ltAAAG
- 19 spy+e XXX Epenthesis
LAy 20 (3) spi 1,1,4,1,2.5 B
P 21 spie 1,1,16,1,6,1 |
. 22 spie XXX wecdocctlLieLLLS® %4
e 23 (21) spie © 1,1,16,1,6,6 e
£ ; 24 splel 1.1,16,2,1,1 +
o 25 "spiel” ends, new lexicon (/M)
O, 26 "0" ends, new lexicon (C1)
oy 27 "spiel” *eo prosult
' 28 (28) splel+ 1,1,16,1,1,1
S 29 splel+ XXX
K4 (("spie1” (M S6)))

Figore 3: The dictionary modification that will be described in scction 7.1 causes the KIMMO rec- é
oy ognizer to make fewer choices among lexicons. Thesc traces show the steps that the recognizer goes
SO through in the analysis of spiel when the merged dictionary is used; the number of lexicon-choice
:l . nodes (LLL) is lower than in Figure 2. The names of the merged lexicons are written in parenthe-
~"~ sized form to indicatc that cach one actually represents a class of lexicons in the original dictionary
N t‘ description. A + entry in the backtracking columnn indicates backtracking from an immediate failure
Wl in the previous step, which does not require the full backtracking mechanisin to be invoked.

W,

AN

~$ sharply reduced by merging the lexicons in such a way that several lexicons can be searched
ts in parallel; section 7.1 will explain in detail. Meanwhile, taking this improvement for granted
:, will make it possible to sidcstep the problem and focus on other processes. With the merged
L dictionary, Figure 3 shows that the number of lexicon--choice alternatives in the search tree for
o spiel is reduced from 8 to 2,!! cutting the total number of steps from 61 to 29. (The choice
oh between spy-noun and spy-verb remains because it would be directly reflected in the output,
:,: but the purely internal choices among the lexicons for different verbal endings are climinated.)
L)

t

"

3.3.3. Finding the lexical-surface correspondence

Finally, some of the backtracking resnlts from local mnbignity in the construction of the
lerical-surface correapondence. Even if only one possibility in globally compatible with the
constraints imposed by the lexicon and the automata, there may not be enough cvidence at
every point in processing to choose the correct lexical surface pair; search behavior results.

' These figures count LLL nodes excinding unambiguous choices.
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% +/e
< T e +XXXXXKX+
: \ +/0

<« IR IR +XXXXXXX+

" ()

LELLLLL+IITTIITII+

[N} +/0 /0
o+ 4ommmenn +XXXKKXX+
§ ERATRRION
_g:l _#e T er0

N ~+AARAAAA+

i1 e/0
.. 1 $mmmm--- +XXXXXXX+
8 IV TN 1 O L OV
i +10
“: ------- +XXXXKRX+
" (("sp1e1* (N $6)))
4 Figure 4: This expanded version of the search tree from Figure 3 shows what hypothesis the KIMMO
" recogniger is entertaining along each path, during the analysis of spiel with a merged dictionary.
49
-‘E . Figure 4 displays the search graphically with an expanded version of the merged-lexicon search
o @ . tree from Figure 3, annotated with information about the specific choices the recognizer has
o at cach point.
::Q Thus, after sceing the surface characters spi..., the recognizer did not have enough
:.: evidence to choose between the lexical possibilitics spy... and spi..., even though only
(0:: one analysis was possible for the complete input spiel. During exploration of the spy...
e possibility in the (/V) lexicon, there was uncertainty about the pairs +/0, +/e, /0, and
e/e. It proved unprofitable to cxplore those regions of the tree in the analysis of spiel, but

Figures 5 and 6 show that the correct analysis can lie in those regions for other words.
%. Similarly, in analyzing the word rubbish (Figure 7), the recognizer cannot tell after
) seeing only rubb... whether the lexical string is rubb... as in rubbish or rub+... asin
e rub+ing ==> rubbing. In fact, it briely considers the possibility that surface r... might
N correspond to lexical re*... as in the stress-marked lexical representation re‘fer, but it
“u quickly discovers that the right context for licensing the e/0 pair is absent. (Recall from
::t section 2.1.1 how a KIMMO automaton implements a change that depends on right context:
; initially it permits the changed pair in the expectation that the proper right context will be
2 found, and upon processing the changed pair, it enters a state-scquence that will eventually
"" block without the necessary right context.)

- In these cases, misguided search subtrees did not get very deep — largely because the
<1 relevant spelling-change processes were local in character. Long-distance harmony processes
": are also possible (§1.2). and thus there can potentially be a long interval before the acceptability
$ of a lexical- surface pair is nltimately determined. For example. when vowel alternations within
e a verh stem are conditioned by the occurrence of particular tense suffixes. it may be necessary
e
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s/s / /1 N c1
------- LA IR ZASN i) FIYIR A PYTRR T o0

+/e

....... +XAKKXXXS
+«/0

....... *XXAAXXX ¢

(Nz
tLLLlLL+TTTIIIT

+/0 ¢/0
------- -mem ot XXKXXXX ¢

/e d/d
....... Gomcrcncpd000000,

oooloo..

171 0/0
------- D 1 1§14 1 T

e/e
------- +XKKXAXX+

(("spy+ed” (V PAST PRT)) (“spysed® (V PAST)))

Figure 5: The scarch trce for spied is similar to the search tree for spiel (Figure 4), but the solution
lies in a differcat region of the tree. Neither part of the search can be eliminated, since either one may
contain the solution.

/ / 74 I c1
S e L0 i e,
Jo s
------- AT | { [TPRTTTITON
0}0
------- olllllllo
. LLLLILLOIXIIIIIO
Jo e/0
------- 4o ommm oo e XRRXXXXS
------- +XAXAXXXX+
+/e /0
------- +AMAARA+
3 o
™ +0000000,
U
N 174 /0
e #ommeeae SXXXXXNN+
AN o/e
,% ----- «=+XXXAXXR+
{. (("spy+s” (V PRES SG 3RD)) ("spy+s™ (N PL)))
: Figure 6: In the analysis of spies. the location of the solution in the scarch tree is different from its
s Jocation for spiel (Figure 4) or spied (Figure 5). Thus none of the three main regions of the tree
0 can be pruncd from the scarch.
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NI, Recognizing surface form "rubbish®.
N} 1 r 1.1,1,2,1,1 12+  rub+d 1,1,1,1,2,6
B 2 re 1.1,1,1,4,1 13 rub+d XXX
qq‘ 3 re’ XXX Elision 14 (6) rudd 1,1,16,2,1,1
o] 4 (2) ru 1,1,4,1,2,1 16 rubbi 1,1,16,1,2,5
oY [ rud 1,1,6,2,1,1 16 rubbis 1,4,16,2,1,1
* 6 "rub” ends, new lexicon (/V) 17 rubbish 1,3,16,2,1,1
7 rub XXX extra input 18 "rubbish” ends, new lexicon (/N
,p 8 + rub+ 1,1,3,1,1,1 19 "0" ends, new lexicon (C1
nt 9 rub+e XXX Gemination 20 "rubbish” sse result
& 10 (7) rub+ 1,1,2,1,1.1 21 (19) rubbish+ 1,6,16,1,1,1
0! 11 rub+e XXX Gemination 22 rubbish+ XXX
.‘. .
' (("rubbish* (N SG)))
f

Figure 7: While analyzing the surface form rubbish, the KIMMO rccognizer is temporarily misled
(i) by the possibility that a lexical e* might have been deleted at the surface and (i) by the possibility
# oy that the surface bb inight have resulted from doubling of a single unlerlying b. However, in each case

]
, the possibility fails to pan out. (Refer to Figure 2 for an explanation of the tuble format.)
e 2
ks
B
g .
R to sec the cnd of the word before making final decisions about the stem.!? The possibility of
fb . a long period of uncertainty forms the basis for the reductions in section 4.
j 3.4. Search and Verification
o ’
) e Setting aside until section 7.1 the problem of choosing among alternative lexicons, it is
@ easy to see that the use of finite-state machinery helps control only one of the two remaining
o sources of complexity. Stepping the automata should be fast, but the finite-state framework
:s does not guarantee speed in the task of guessing the correct lexical-surface correspondence.
The search required to find the correspondence may predominate.
L)
! In fact, the KIMMO recognition and generation problems bear an ominous resemblance
] P
ig to problems in the computational class N P. N P consists of thc problems that can be solved
, on a Nondeterministic Turing machine within Polynomial time. Informally, a problem in N P
‘.t has a solution that may be hard to guess (hence the usc of nondeterministic machines) but is
::', easy to verify (in polynomial time):
Y . s .o . .
& [Informally,) we view [a nondeterministic algorithm] as being composed of two sep-
‘:' arate stages, the first .being a guessing stage and the second a checking stage ....
(Garey and Johnson, 1979:28)
", It should be evident that a “polynomial time nondeterministic algorithm” is basically
:.’ a definitional device for capturing the notion of polynomial time verifiability, rather
::; than a realistic method for solving decision problems. (:29)
::. This difference in diflicnlty between guessing and verification sceins to fit the KIMMO frame-
s work: the finite-state two-level automata can verify a solution quickly, but it may still be hard
to gucss the correct lexical-surface correspondence.
{ 128ince long-distance right context is part of the problem, it has been suggested that KIMMO processing in
g'\‘ the problematic cases would be easier if carried out from right to left. However. the more common left context
: would then cause difticulties, and what could be done about mixed rule systems in which both left and right

context play a role? In fact. the reductions in section 4 show that no simple fix will help in the general case.
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'-‘\ It is not always apparent from local evidence how to construct a lcxical-surface corre
Q spondence that will satisfy the constraints imposed by a sct of two-lcvel automata: thus the
KIMMO algorithms contain the secds of complexity. The next sections will exploit those seeds
in mathematical reductious that prove KIMMO recognition and generation are computation-
‘.;n‘. ally difficult in the worst case. The finite-state two-level framework itself does not guarantee
computational efficiency.
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4. The Complexity of Two-Level Morphology

The reductions in this section show that two-level automata can desacribe computationally
difficult problems in a very natural way. It follows that the two-level framework itsclf cannot
guarantec computational efficiency. If the words of natural languages are easy to analyze,
the efficiency of processing must result from some additional property that natural languages
have, beyond thosc that are captured in the two-level model.!3 Otherwise, computationally
difficult problems might turn up in the two-level automata for some natural language, just as
they do in the artificially constructed languages here. In fact, the reductions are abstractly
modeled on the KIMMO treatment of harmony processes and other long-distance dependencies
in natural languages (see §§3.3.3,1.2).

4.1. The SAT Problem

The reductions involve versions of the Boolean satisfiability problem (SAT). An instance
of SAT consists of a Boolean formula in conjunctive normal form (CNF), and the question to
be answered is whether there is a way of assigning values (T,F) to the variables so that the
formula comes out true. Thus the formulas

z
(= Vv y)&(z v 7)
EVY&FV )T VE(zVYV3)

are satisfiable, while the formulas
z&%
(z V y)&(z V §)&Z
(zVyV2)&ZVI&(ZV )&V VI&TV 2)&(ZVy)

are unsatisfiable. The SAT problem is N P-complete and thus computationally difficult. The
related problem 3SAT is a restricted case of SAT in which every disjunction must have exactly
three disjuncts. (This restricted form of CNF is known as 3CNF.) 3SAT is also N P-complete,
though 2SAT is not.!4

4.2. KIMMO Generation is N P-Hard

It is easy to encode an arbitrary SAT problem as a KIMMO generation problem. The
gencral problem of mapping from lexical to surface forms in KIMMO systems is therefore N P-
hard, i.e. N P-complete or worse (sce section 6). Formally. define a possible instance of the
computational problemn KIMMO GENERATION as any pair (A, ). where A is the automaton
component of a KIMMO system specificd as in Gajek et al. (1983) and o is a atring over the
alphabet of the KIMMO system. An actual instance of KIMMO GENERATION will be any

13Por more extensive theoretical discussions of efficient processability, see Berwick and Weinberg (1082),
Barton (1085a), and references cited therein.

TSAT was the first problem to be proved N P-complete (Cook’s Theorem, 1971). The N P-completencss of
3SAT is also well-known. For details, see Garey and Johnson (1079) or any standard textbook.
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"z-consistency” 3 3

z z = (lezical characters)
T F = (surface characters)
1: 2 3 1 (z undecided)
2: 2 0 2 (= true)
3: o 3 3 (z false)

Figure 8: The KIMMOGgenerator system that encodes a SAT formula ¢ should include a consistency
automaton of this form for every variable z that occurs in . The consistency automaton constrains
the mapping from variables in the lexical string to truth-values in the surface string, cnsuring that
whatever value is assigned to z in one occurrence must be assigned to z in every occurrence.

*satisfaction” 3 4
‘ - (lezical characters)

T F - , (surface characters)
1. 2 1 3 0 (no truce seen in this group)
2: 2 2 2 1 (true seen in this group)
3. 1.2 00 (-F counts as true)

Figure 9: The SAT generator system for any formula should include this satisfactson automaton, which
deterinines whether the truth values assigned to the variables causc the formula to come out true.
Since the formula is in CNF, the requirement is that the groups between commas must all contain
at least one true value. In state , no true value has been seen; F cycles, while T goes to state 2 to
wait for the comna that begins the next group. State 3 remembers a preceding minus sign so that
-F can count as truc. Only state 2 is a final state because only state 2 indicates that a true value has
occurred.

possible instance (A. o) such that for some o', the lexical-surface pair o /o’ satisfies the con-
straints imposcd by the antomata in A. Thus (A4, ¢) is an instance of KIMMO GENERATION
if there is any surface string that can be gencrated from the lexical string o according to the
automata. (As the problem is dcfined, an algorithm is not required to exhibit the surface
strings that can be generated, but only to say whether there are any.)

To encode a SAT problem ¢ as a pair {A4,q), first construct o from the CNF for-
mula ¢ by a notational translation. Use a minus sign for negation, a comma for conjunc-
tion, and no cxplicit operator for disjunction. Then the o correaponding to the formula
(Z V y)&(§ vV 2)&(z Vy V z) is -xy,-yz,xyz. The notation is ynambiguous without paren-
theses because ¢ is required to be in CNF.

Second. construct A (in polynomial time) in three parts. (A varics from formula to formula
only when the formulas involve different sets of variables.) The alphabet specification should list
the variables in @ together with the special characters T, F, minus sign, and comma. The cquals
sign should be declared as the KIMMO wildeard character, as usual. The consistency automata,
one for each variable in o, should be constructed as in Figure 8. The satisfaction automaton
should be copiced from Figure 9 and docs not vary from forinula to formula. Figure 10 lists
the entire SAT gencrator system A for formulas ¢ that use variables z, y, and 2.

The generator systemn nsed in this construction is set up so that surface strings are identical
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%\ . "x-consistency” 3 3
}.1, ¥::.:" ALPHABEY x y 2z T F - , . ; : :
DR Sty ANY o 1: 2 31
3 Y A END 2: 2 0 2
3: 0 3 3
’ “y-consistency” 3 3
P 'J ¥ ¥ .
5N 1: 2 3 1
Ny 2: 2 0 2
5 3: 0 3 3
Rt .
Figure 10: This is the complete KIMMO generator "z- c:"““:"c’ 33
4 system for solving SAT problems in the variables T F =
%: X, ¥, and z. The system includes a consistency au- 1: 2 3 1
h) tomaton for cach variable in addition to a satisfac- 2: 2 0 2
o tion automaton that does not vary from problem 3: 0 33
o to problem. “satisfaction” 3 4
:ig‘s ; ; X .
1. 2 1 3 0
oo 2: 2 2 2 1
".i , 3.1 200
,ﬁ:' END
G

to lexical strings, but with truth values substituted for the variables. Thus any surface string
oy generated from o will directly exhibit a satisfying truth-assignment for . The consistency
automaton for each variable £ ensures that the value assigned to z is consistent throughout
the string. In state 1, no truth-value has been assigned and cither z/T or z/F is acceptable.
In state 2, /T has been chosen once and thercfore only z/T can be permitted for other

-“- -

P

4 NN occurrences of . Similarly, state 3 allows only z/F. All of the states of the z-consistency
w automaton ignore punctuatior marks and variables other than x. The satisfaction automaton
" blocks if any disjunction contains only F and -T after truth-values have been substituted for the
K variables; thus the satisfaction automaton will end up in a final state only if the truth-values
w that have bcen assigned satisfy every disjunction and hence .
i The net result of the constraints imposced by the consistency and satisfaction automata
Bl is that some surface string can be generated from o just in case the original formula ¢ has
- 7 a satisfying truth-assignment. Furthermore, the pair (4,0) can be constructed in time poly-
T nomial in the length of ©; thus SAT is polynomial-tine reduced to KIMMO GENERATION,
.'.:' and the general case of KIMMO GENERATION is at least as hard as SAT. Figure 11 traces
;..c: the operation of the KIMMO generation algorithm on a satisfiable formula; note that the gen-
:...o crator goes through quite a bit of search cven though there turns out to be only one answer.
w4 Figure 12 shows what happens with an unsatisfiable formula.
e
n‘:'. 4.3. KIMMO Recognition is N P-Hard
0:0 Like the generator. the KIMMO recognizer can be nsed to solve computationally diffi-
) .
it cult probleins. KIMMO recognition and KIMMO generation are both N P-hard. To treat the
L recognizer formally, define a possible instance of the computational problemmn KIMMO RECOG-
NITION as any triple (A, D,o), where A and o are as before, and D is the dictionary compo-

nent of a KIMMO system deseribed as specified in Gajek et al, (1983). An actual instance of
KIMMO RECOGNITION will be any possible instance (A, D.a) such that for some o', (i) the
Y lexical- surface pair o'/o satisfics the constraints imposed hy the antomata in A as before,

N and (ii) ¢’ can be generated by the dictionary component D. Thus (A, D, o) is an instance of
S o
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Generating from lexical form "-xy.-yz.-y-7.xyz".
- +

LT DT M T L el TR T AR TS

hanke o Skt

1 1.1,1.3 a8 -FF,-FT,-F-T,FFT  3.,3,2,2

2 -F 3.1,1,2 39 “-FF,~FT,-F-T,FFT" **® result
3 -FF 3.3.1,2 40 (3) -FT 3.2.1,2

4 -FF, 3.3.1,1 41 -F7, 3,2,1,1

[} ~FF,- 3,3,1.3 42 -FT,- 3.2,1,3

6 -FF,-7 XXX y-con 43 -FT.-F XXX y-com.
7 + -FF,-F 3.3.1,2 “ +  -FT.-7 3.2.1.1

8 -FF,-FF 3,.3.3,2 46 -FT,-TF 3,2,3,1

9 -FF.-FF, 3,3.3.1 46 -FT.-TF, XXX satis.
10 -FF,-FF,- 3,3,3.3 47 (48) -FT,-T7 3,2,2,2
11 -FF,-FF,-T XXX y-con 48 -FT.-T7, 3,2,2.1
12 + -FF,-FF,-F 3.3,3.2 49 -FT,-TT,- 3.2.2,3
13 ~FF,-FF.-F- 3.3.3,2 50 -FT,-TT.-F xxx g-con.
14 ~FF ,-FF,~F-T XXX z-con 51 + -F7,~T7,-7 3.2,2.1
15 + -FF,-FF,-F-F 3,3.3.2 62 -FT,-T7,-T~ 3,2,2.3
16 -FF.-FF -F-F, 3,3,3.1 63 -FT,-T7,-T-F XXX z-con
17 ~FF,.-FF -F-F,T XXX x-con 54 <+ -FT,-77,-T-7 32,21

18 + ~-FF,-FF,-F-F.F 3,3.3.1 55 -FT,-7TT7,-7-T, XXX satis.
19 ~-FF.-FF,-F-F,FT XXX y-con 66 (2) -7 2.1,1,1
20 + ~FF,-FF,-F-F FF 3,3.,3,1 57 -TF 2,3,1,1
21 -FF,-FF,-F-F,FFT XXX 2-con 58 -TF, XXX satis.
22 + -FF,-FF,-F-F FFF 3,3.3.,1 69 (§7) -TT7 2,2,1,2
23 -FF,-FF,~F-F,FFF XXX satis. nf 60 -17T, 2,2,1,1
24 (8) -FF,-FT 3.3,2,2 61 -77.- 2,2,1,3
25 -FF,-FT, 3,3.2,1 82 -1T.-F XXX y-con.
26 -FF,-FT,- 3,3,2,3 63 + -T7,-7 2,2,1,1
27 -FF,-FT,-T XXX y-con. 64 -T7.-TF 2.,2,3,1
28 + -FF,-F7,-F 3, 3.2.2 656 -17,-TF, XXX satis.
29 -FF,-FT,-F- 3,3.2.2 66 (64) -T7,-TT 2,2,2,2
30 -FF,~FY,-F~F XXX z-con. 87 -77,-T7, 2,2,2,1

31 + -FF,-FT,-F-T 3,3,2,2 68 -T7,-7T,- 2,2,2.3
32 -FF -FT,-F-T, 3.3.2.1 69 -17,-T7,-F XXX y-con
33 -FF,-FT,-F-T,7 XXX x-con. 70 + -T7,-77,-T 2,2,2,1
34 + -FF,.-FT,-F-T.F 3.,3,2.1 71 -T7,-77,-T- 2,2.2,3
35 ~FF,-FY,-F-T,FT XXX y-con. 72 -T7,~T7,-T-F XXX z-conm.
36 + -~FF,.-FT,-F-T,FF 3.3,2,1 73+ -17,~T7,-7-7 2,2,2,1
a7 -FF,-FT,-F-T,FFF XXX z-con. 74 -17,-17,-1-T, XXX satis.

("-FF,-FT,-F-T,FFT")

Figure 11: The KIMMOgenerator system of Figure 10 goes through these steps when applied to the
encoded version of the (satisfiable) formula (T V )&(T V 2)&(F V Z)&(z V y V 3). Though only one
truth-assignment will satisfy the formula, it takes guite a bit of backtracking to find it. The notation
used here for describing generator actions is similar to that used to describe recognizer actions in
Figure 2, but a surface rather than a lexical string is the goal. As in figure 7, a +-entry in the
backtracking column indicates backtracking from an iinmediate failure in the preceding step, which
docs not require the full backtracking mechanism to be invoked.

KIMMO RECOGNITION if ¢ is a recognizable word according to the constraints of A and
D.

Many reductions are possible, but the reduction that will be sketched here uses the 3SAT
problem instead of SAT. It also uses an encoding for CNF formulas that is slightly different
from the one used in the generator reduction. To encode a SAT problem g as a triple (4, D, o),
first construct o from ¢ by a new notational translation. This time, treat a variable z and
its negation T as scparate, atomic characters. Continue to use a comma for conjunction and
no cxplicit operator for disjunction, but now add a period at the end of the forinula. Then
the o corresponding to the formula (Z VZ V y)&(g V § V 2)&(z V y V 2) is XXy, §yz, xyz.,
a string of 12 characters. (With 3SAT, the commas are redundant, but they arc retained here
in the interest of readability.)

Second. construct A (in polynomial timne) in two parta. (As before, A varics from formula
to formula only when the formulas involve different sets of variables.) The alphabet specifi-
cation should list the variables in o together with their negations and the special characters
T. F. comma, and period. The equals sign should again be declared as the KIMMO wildeard
character. The consistency automata, still one for each variable in o, should be constructed
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Genorlunp from lexical form "xyz,-x-z,-x2,-y-2,-yz,-2y".
1 .1.1, 7{ FIT,-7 XXX x-con.
18 2 FF 3,3.1.1 72 + FTT.-F 3,2,2,2
3 FFF 3.3,3.1 73 FTT,-F- 3,2,2,2
4 FFF, XXX satis. 74 FTT,-F-F XXX z-con.
5 (3) FFY 3,3,2.2 78 - FTT,-F-T 3,2.2,2
[} FFT, 3,3,2.1 76 FIT,-F-T, 3,2,2,1
7 FFT,~ 3.3.2.3 17 FIT,-F-7,- 3,2,2,3
8 FFT,-T XXX x-con. 78 FIT,-F-T,-T XXX x-con,
9 + FFT,-F 3.3,2,2 79 + FTT,-F-T,-F 3.2,2,2
10 FFT,-F- 3,3.2,2 80 FTIT,-F-T.-FF XXX z-con.
11 FFT.-F-F XXX z-con, 81 + FIT,-F-T,-FT 3,2,2,2
!0 12 + FFT,-F-T 3.,3.2,2 82 FIT,-F-T,.-FT, 3.2,2.1
; 13 FFY,-F-T, 3,3,2.1 83 FIT,-F-T,-FT,- 3,2,2,3
" 14 FFT.-F-T,- 3,3.2,3 84 FIT,-F-T,-FT,-F XXX y-con.
W 15 FFT,-F-T,-T XXX x-con. 85 + FTY,-F-T,-FT,-T 3,2,2,1
!| 16 + FFY,-F-T,-F 3.3.2,2 86 FIT.-F-7,-F7,-T- 3,2,2.3
~ 17 FFT,-F-T,-FF XXX z-con 87 FTIT,-F-T,-FT,-T-F XXX z-con.
3y 18 + FFT,-F-T,-FT 3.3.2.2 88 + FTY.-F-T,-F7,-T-T 3,2,2.,1
¥ 19 FFT,-F-T,-FT, 3.3.2.1 89 FTIT,-F-T,-FT,-T-T, XXX satis.
20 FFT,-F-T,-FT,- 3,3,2,3 90 (1) T 2,1.1,2
21 FFT,-F-T,-FT.-7 XXX y-con 91 TF 2,3,1,2
3 22 + FFT,~F~T,-FT,.-F 3.,3,2,2 92 TFF 2,3,3,2
23 FFT,-F~T,-FT,-F- 3.3.2,2 23 TFF, 2.3,3.1
B 24 FFT,~F-T,-FT,~F-F XXX z-con 94 TFF, - 2,3,3,3
b\ 25 + FFT,-F-T,~FT,-F-T 3.3.2,2 95 TFF,-F XXX x-con.
z 26 FFY,-F-T,-FT.-F-T, 3.3,2.1 96 + TFF,-T 2,3,3.1
y 27 FFT,~F-T,-FT,-F-T7,- 3,3,2,3 34 TFF,-T- 2,3,3,3
¥ 28 FFT,~F-T,-FT,-F-T,-T XXX y-con. a8 TFF,-T-T XXX z-con.
Mo 29 +  FFY,-F-T.-FT,-F-T.-F 3,3,2,2 99 +  TFF,-T-F 2,3,3,2
¥ 30 FFT.-F-T7,-FT,-F-T -FF XXX z-con. 100 TFF.-T-F, 2.3,3.1
4 31 +  FFT,-F-T,-FT,-F-T,-FT 3.3.2,2 101 TFF,-T-F,- 2,3,3,3
bt 32 FFT,-F-T,-FT,-F-T1,-FT, 3.3,2,1 102 TFF,-T-F,-F XXX x-con.
33 FFT,-F-T,-FT,-F-T,-FT,~- 3,3,2,3 103 + TFF,-T-F,-T 2,3,3,1
i 3 FET.-F-T.-FT.-F-T.-FT.-F XXX z-con 104 TFF,-T-F,-T1 XXX z~con.
35 « FFT.-F-T,-FT,-F-T,-FT,-T 3,3.2.1 108 + TFE . -T-F,-TF 2,3,3,1
36 FFT,-F-T7,-FT,-F-T -FT,-TT XXX y-con 106 TFF,-T-F.-TF, XXX satis.
a7+ FFT.-F-T.-FT.-F-T.-FT,-TF 3.3,2.1 107 (92) TFY 2,3,2,2
% 38 FFT,-F-T,-FT,-F-T,-FT,-TF XXX satis. nf. 108 TFY. 2,3,2,1
N ag (2) FT 3,2,1.2 109 TFY,- 2,3,2,3
. 40 FTF 3,2.3,2 110 TFY,-F XXX x~-con
41 FTF. 3.2,3,1 111 + TFY,-T 2,3,2,1
u 42 FTF.- 3,2.3.3 112 TFT,-T- 2,3,2,3
v 43 FTF.-T XXX x-~con 113 TFT,-T-F XXX z~con.
hY a4+ FTF.-F 3.2.3.2 14+ TFT.-T-T 2,3,2,1
& 45 FTF, -F- 3,2.3,2 1156 TFY,-T-T XXX satis.
o 46 FYF.-F-T XXX z-con 116 (91) 17 2.2,1,2
KN 47+ FTF,-F-F 3.2.3,2 11 TTF 2,2,3,2
(4 48 FTF.-F-F 3.2,3,1 118 TTE, 2,2,3.1
" 49 FTF,-F-F,- 3.2,3,3 119 TTF. - 2,2,3,3
vy 50 FTF.-F-F,-1 XXX x-con 120 TTF.-F XXX x-con.
51 + FTF.-F-F.-F 3,2,3,2 121 + TIF,-T 2,2.3.1
P 52 FTF,-F-F,-FT XXX z-con 122 TTF,-T- 2,2,3,3
fi. 53 «+ FTF.-F-F, -FF 3.2.3,2 123 TTF,-T-7 XXX z-con.
LY 54 FTF.-F-F,-FF, 3.2,3,1 124 + TTF,-T-F 2.2.,3,2
¥ 65 FTf,-F-F,-FF,- 3,2,3,3 1256 TTF,-T-F, 2,2,3,1
A 56 FTF.-F-F,-FF,-F xxx g-con 126 TTF,-T-F.- 2,2,3.3
3 57 + FTF,-F-F,-FF.-T 3,2,3,1 127 T1F,-T-F,-F XXX x-con.
LS 58 FTF,-F-F, -FF, -T~- 3.2,3,3 128 + TTF,-T-F,-T 2.2,3,1
' 59 FIF,-F-F,-FF,-T-T XXX z-con 129 TTF.-T-F -77 XXX z-con.
':’ 60 + FTF.-F-F,-FF,-T-F 3.2.3,2 130+ TTF.-T-F,-TF 2,2.3,1
. 61 FTF.-F-F,-FF,-T-F, 3,2,3,1 131 TTF,-T-F,-TF, XXX satis.
, 62 - 3.2,3.3 132 (117) 177 2,2,2,2 |
63 F F.-F XXX y-con 13 177, 2.2,2,1
N 84 + FTF.-F-F.-FF.-T-F.-7 3.2.3,1 134 117, - 2,2,2,3
2] 65 FTF,-F-F,-FF,-T-F,-TT XXX z-con 135 TTY.-F XXX x-con.
) 66 + FTF.-F-F -FF.-T-F,-TF 3,2,3,1 136 + 77,7 2,2,2,1
! 67 FTF.-F-f,-FF.-T-F -TF, XXX satis 137 177,-T- 2,2,2,3
v €8 (40) FTT 3.2,2,2 138 T17.-T-F XXX z-con
Wy 69 FTT, 3.,2.2,1 139 + T77,-7-7 2,2.2,1
L 70 FTT, - 3.2,.2,3 140 T17,-T-T, XXX satis.
L NIL
'
M
)
N
:b. Figure 12: The KIMMO geuerator system of Figure 10 goes through 140 steps before verifying that the
1:: fornula (z Vy V 2)&(Z V 3)&(Z V 2)&(F V 2)&(¥ V z)&(Z V y) bas no satisfying truth-assignment.
L
b
DA
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"z-consistency® 3 b

T T F = (lezical characters)
z Z I = (surface characters)
1: 2 3 2 1 (z undecided)
2: 2 0 2 2 (z true)
3: 0 3 o 3 (z false)

T T T e Y AT "J"-'x‘f-.'.ﬁkm*

Figure 13: The KIMMO recognizer system that encodes a 3SAT formula o should include a constatency
automaton of this form for cvery variable z that occurs in @. As in the gencrator reduction, the
consistency automaton constrains the mapping from variables to truth-values, ensuring that the value
assigned to z is consistent throughout the formula. Howevcer. in the recognizer reduction the automaton
must also cnsure that the values assigned to z and Z are opposites, since z and I are treated as atomic
alphabet characters.

ALTERNATIONS
{ Root = Root )
{ Punct = Punct )

(#=)

END
LEXICON Root 117 Punct s
TTF Punct ]
TFY Punct ",
TFF Punct .
FTT Punct ne.
FTF Punct .
FFT Punct i
LEXICON Punct R Root ",
# nn.

END

Figure 14: The 3SAT recognizer system for any formula should include this dictionary component,
which cnsures that the truth.values assigned to the variables in the surface string will cause the
formula to come out true. All combinations of three truth values are listed, except for the value FFF
that would cause one of the 3CNF disjunctions to be false: the same dictionary component is used for
all 3SAT problemns. Dach lexicon entry specifies the continuation class of lexicons that can follow. For
instance, the class Punct containing only the lexicon Punct is the continuation class of TTT, while the
class of . is the empty continuation class #. "" is an emnpty feature set, used since no word features
are being recovered in this mathematical reduction. The dctailed format of the dictionary component
is described in Gajek et ol. (1083).

as in Figure 13. There is no satisfaction automaton in this version of the recognizer.

Fiually, take D as a constant from Figure 14. In this reduction, D imposcs the satisfaction
constraint that was enforced with an automaton in the generator reduction. Formula ¢ will
be satisfied iff all of its conjuncts are satisfied, and since  is in JCNF, that means the truth-
values assigned within each disjunction must be TTT, TTF, ..., or any combination of three
truth-values except FFF. This is exactly the constraint imposed by the dictionary. (Note that
D is the same for every 3SAT problem; it does not grow with the size of the forinula or the
number of variables.)

Compared to the gencrator reduction, the roles of the lexical and surface strings are
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! ' reversed in the recognizer reduction. The surface string encodes p, while the lexical string
indicates truth-values for its variables. The consistency automaton for each variable z still
: ensures that the value assigned to z is consistent throughout the formula, but now it also
; ensures that z and T are assigned opposite values. As before, the net result of the constraints
10 imposed by the various components is that (A, D,o) is in KIMMO RECOGNITION just in
; : case  has a satisfying truth-assignment. The general case of KIMMO RECOGNITION is at
I: least as hard as 35AT, hence at least as hard as SAT or any other problem in NP (in the
: ; sense of polynomial-time reduction).
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> 5. The Effect of Precompilation
The reductions presented in section 4 require both the language description and the input
e string to vary with the SAT/3SAT problem to be solved. Hence, there arises the question
P ! of whether some computationally intensive form of precompilation could blunt the force of
.' the reduction, paying a potentially exponential compilation cost once and allowing KIMMO
~ runtime for a given grammar to be uniformly fast thereafter, This section examines four
. aspects of the precompilation question. .
5.1. Conversion to GMACHINE/RMACHINE Form
'. The external description of a KIMMO automaton or lexicon is not the same as the form
:' that is used by the generation or recognition algorithm at runtime. Instcad, the external de-
:. scriptions are used to construct internal forms: RMACHINE and GMACHINE forms for automata,
L and letter trees for lexicons (Gajck et al., 1983). Hence one question to address is whether the
. complexity implied by the reduction might actually apply to the construction of these internal
4 forms. If this were truc, then the complexity of the generation problem (for instance) would
S be concentrated in the construction of the “feasible-pair list” apnd the GMACHINE.
v It is possible to deal with this question dircctly by reformulating the reduction so that the
» formal problems and the construction specify machines in terms of their internal (e.g. GMA- 6
CHINE) forms instcad of their external descriptions. The GMACHINEs for the class of machines
> created in the construction have a very regular structure, and it is easy to build them directly
: instead of building descriptions in external format. As Figure 11 also suggested, it is runtime
N processing that makes translated SAT problems difficult for a KIMMO system to solve.
_ 5.2. BIGMACHINE Precomplilation
;~ There is also another kind of preprocessing that might be expected to help. As men-
I tioned in scction 2.1.2, it is possible to compile a set of KIMMO automata into a single large
automaton that will run faster than the original sct. The system will usually run faster with
:v one large automaton than with several small ones, since it has only one machine to step and
. the speed of stepping a machine is largely independent of its size. However, in the worst case
the merged automaton is prohibitively large, exponentially larger than the smaller machines
(Karttuncn, 1983:176).
Gajek et al. (1983) usc the terms BIGGMACHINE and BIGRMACHINE to refer to the gener-
/i ation and recognition versions of a large merged automaton, and therefore such an automaton
L] will be called & BIGMACHINE. Since it can take cxponential time to build the BIGMACHINE
for a translated SAT problem, the reduction formally allows the possibility that BIGMACHINE
¥ precompilation could make runtime processing uniformly cfficient.
o Bowcver, an expensive BIGMACHINE precompilation step doesn’t help runtime processing
] enough to change the fundatnental complexity of the algorithins. Recall from section 3.3 that
0 the main ingredients of KIMMO runtime complexity arc the mechanical operation of the au-
. tomata, the difficulty of finding the correct lexical- surface correspondence, and the necessity
,, Lo
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of choosing among alternative lexicons. BIGMACHINE precompilation will speed up the me-
chanical operation of the automata, perhaps by a factor equal to the number of variables in
the SAT query. However, it will not help in the task of deciding which lexical/surface pair will
be globally acceptable. The BIGMACHINE will be as linited as the equivalent automata in its
forecasting abilities. Precompilation oila the machinery, but doesn’t accomplish fundamental

; ~.{A

"
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!,' 5.3. BIGMACHINE Size and the Interaction of Constraints
BIGMACHINE precompilation sheds light on another precompilation question as well. It
A -{ is known that the compiled BIGMACHINE corresponding to a sct of KIMMO automata can be
:’ exponentially larger than the original system in the worst case; for example, such blowup
: occurs if the SAT automata arc compiled into a BIGMACHINE. In practice, however, the size
of the BIGMACHINE varies — thus naturally raising the question of what distinguishes the
-\ “explosive” sets of antomata from those that behave 1ore tractably.
,“ It is sometimes suggested that the degree of interaction among constraints determines
‘ ' the amount of BIGMACHINE blowup. In this view, a large BIGMACHINE for a SAT problem is
o no surprise, for the computational difficulty of SAT and similar problems results in part from
' 4’; their “global” character. Their solutions generally cannot be deduced piece by piece from
';‘ ] local evidence; instead, the acceptability of each part of the solution may depend on the whole
i @ problem. In the worst case, the solution is determined by a complex conspiracy among the
o constraints of the problemn. Thus the large BIGMACHINE gives a more “honest” estimate of
;‘.::: problem difficulty than the small collection of individual automata.
::'0: However, a slight change in the SAT automata demonstrates that BIGMACHINE size need
‘::a not correspond to the degree of interaction among the automata. Eliminate the satisfaction
My automaton from the generator system, leaving only the consistency automata for the variables.
W Then the system will not search for a aatinfying truth-assigment, but merely for one that is
\ - ’ internally consistent — that is. one that never assigns both T and F to the same variable in its
-' different occurrences. This change will entirely climinate the interactions among the automata;
,\: s cach automaton is concerned only with the assigments to its particular variable, and there is no
-'" way for an assignment to one variable to influence the acceptability an assignment to another.
, Yet despite the clismination of interactions, the BIGMACHINE must still be cxponentially

larger than the collection of individual automata. Since the states of the BIGMACHINE must
distingunish all the possible truth-assignments to the variables, its size must be exponential in
the number of individual automata. In fact, the lack of interactions can actually tncrease the
number of states in the BIGMACHINE. Interactions among the automata constrain the com-
binations of states that can be reached, thus reducing the number of accessible combinations
below the mathematical upper limit.
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85.4. Transducers and Determinization
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One more precompilation question is whether the nondeterminism involved in constructing
the lexical surface correspondence can’t be removed by standard determiniration techniques
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Figure 15: This nondetenninistic finite-state transducer cannot be determinized. An equivalent de-
terministic FST would have to wait for the end of the input string beforc generating any output.
However, at that point it would have to remuember how many as or bs to output in correspondence
with the nnbounded number of zs in the string — an impossible task for a finitc-state device.

for finite-state machines. After all, every nondeterministic finite-state machine has a deter-
ministic counterpart that is equivalent in the scnse that it accepts the same language.'® Aren't
KIMMO automata just ordinary finite-state machines operating over an alphabet that happens
to consist of pairs of characters? @

It is indeed possible to view KIMMO automata in this way when they are being used to
verify or reject hypothesized pairs of Jexical and surface strings.!® However, in this use they
don’t necd determinizing: they are alrcady deterministic, for there is only one new state listed
in each ccll of the description of a KIMMO automaton. In the cases of primary interest —
generation and recognition — the machines are being used as genuine transducers rather than
acceptors.

The determinizing algorithms that apply to finite-state acceptors will not work on trans-
ducers. Indced, many finite-state transducers are not determinizable at all. For example,
consider the transducer in Figure 15. On input zrzzza it must output aaaaaa, while on input
zzzzzb it must output bbbbbb. An equivalent deterministic finite-state transducer is impossible.
A detcrministic transducer could not know whether to cutput a or b upon sceing z. However,
it also could not output nothing and put off the decision until later: being finite-state, it would
not in general be able to remember at the end how many occurrences of z there had been, so
it would not be able to print the right number of initial occurrences of a or b.

For similar reasons, there is no way to build deterministic finite-state transducers for the
SAT problems. Upon sceing the first occurrence of a variable, a deterministic transducer could
not know in general whether it should output T or F. However, it also could not wait and output
a truth-value later, for there might be an unbounded number of occurrences of the variable

15But not in the sense that it asigns the same patscs to the strings of the lanmé. where a parse according to
a finite-statc machine is the sequence of states traversed - a point related to the imipossibility of determinising
transducers.

16This statement jgnores any subtleties having to do with the processing of nulls, which will be discussed

later (§6).
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B before there was sufficient evidence to assign the truth-value. A finite-state transducer would
) not be able in general to remember how many truth-valuc outputs had been deferred.
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6. The Effect of Nulls

Since KIMMO systems can encodc N P-complete problems, the general KIMMO generation
and recognition problems are at least as hard as the computationally difficult problems in
NP. But could they be even harder? The answer depends on whether null characters are
allowed. If null characters are forbidden, the problems are in N P, hence (given the previous
N P-hardness result) N P-complete (§6.1). If null characters are completely unrestricted, the
problems are PSPACE-comiplete, thus potentially even harder than the problems in N P (§6.2).
However, the full power of unrestricted null characters is not needed for linguistically rclevant
processing. Continuing to explore the effcct of KIMMO null characters, section 6.3 mentions a
subtle point — with computational consequences — about the interpretation of the KIMMO
constraint-intcrsection operation when nulls are involved.

6.1. NP-Completeness Without Nulls

The generation and recognition problems for KIMMO automata without nulls are N P-
complete. Since section 4 showed that the problems were N P-hard, all that remains is to
show that a nondcterministic machine could solve them in polynomial time. Only a sketch of
the proofs will be given.

Given a possible instance (A,0) of KIMMO GENERATION, the basic nondeterminism A

of the machine can be used to guess the surface string corresponding to the lexical string o. @
The automata can then quickly verify the correspondence. The key fact is that if A allows no
nulls, the lexical and surface characters must be in one-to-one correspondence. The surface
string must be the same length as the lexical string, so the size of the guess can’t get out of
hand. (If the guess were too large, the machine would not run in polynomial time.)

Given a possible instance (4, D,o) of KIMMO RECOGNITION, the machine should
guess the lexical string instead of the surface string; as beforce, its Jength will be manageable.!?
Now, however, the machine must also guess a path through the dictionary. The number of
choice points is limited by the length of the string,!® while the number of choices at each point
is limited by the number of lexicons in the dictionary. Given a lexical-surface correspondence
and a lexicon path, the automata and the dictionary component can quickly verify that the
lexical/surface string pair satisfics all relevant constraints.

17 When nulls are allowed as in the next section, the machine must also gucss where to insert 0 characters into
the surface atring. Because of the way the automata operate, the strings that are submitted to the automata
for verification must. include the nulls.

1¥Nulls in the lexicon do not have the same interpretation as nulls in the automata. Nulle should not occur
in the dictionary, except in “pull lexicon cntries” that ure written as 0 in their entirety. Unlike nulls in the
automaton component, which are treated as genuine characters by the automats, null lexicon cntrics are merely
a notational device and can be removed in the course of constructing letter trees from the lexicons. Thus the
number of choice paints in the lexicon data-structure is limited by the length of the lexical string even when
uulls are permitted.

ﬁ

STt e o onend



LR NTLN TN,
RRTT

Rl
N 5?1

i

6.2. PSPACE-Completeness with Unrestricted Nulls

If nulls arc completely unrestricted, the arguments of scctian 6.1 do not go through. The
problem is that unrestricted null characters allow the lexical and surface strings to differ wildly
in length. The time it takes to guess or verify the lexical-surface correspondence may no longer
be polynomially bounded in the length of the input string.

In fact, it is easy to show that KIMMO RECOGNITION with unrestricted null characters
is PSPACE-complete — at least as hard as any problem that can be solved in polynomial space.
Though the question is open, PSPACE-complete problems are likely to be even harder than
N P-complete problems.

Not only is a PSPACE-complete problem not likely to be in P, it is also not likely to
be in N P. Hence a property whose existence question is PSPACE-complete probably

cannot even be verified in polynomial time using a polynomial length “guess.” (Garey
and Johnson, 1979:171).

Thus the worst case of KIMMO RECOGNITION becomes extremely difficult if null charac-
ters are completely unrestricted. (Incidentally, PSPACE includes such problems as deciding
whether a player has a forced win from certain N x N checkers or Go configurations.!9)

The easieast PSPACE-completeness reduction for KIMMO RECOGNITION with unre-
stricted nulls involves the computational problemn FINITE STATE AUTOMATA INTERSEC-
TION (Garcy and Johnson, 1979:26G). A possible instance of FSAI is a sct of dcterministic
finite-state automata over the same alphabet. The problem is to determine whether there is
any string that is accepted by all of the automata. Given a set of automata over alphabet
E, construct a corresponding KIMMO RECOGNITION problemn as follows. Let a and b be
new characters not in I, and takc the KIMMO alphabet to be £ U {a,b}.2° Declare = as the
wildcard character and 0 as the null character.

Then build the rest of the automaton component in two parts. First, include the following
“main driver” automaton:

*Nain Driver" 3 3

a b = (lezical characters)
a b O (surface characters)
1. 2 0 0 (want a)
2. 0 3 2 (let automata run)
3: 0 0 O (got ab; final state)

This will accept the surface string ab, allowing arbitrary lexical gyrations between a and b
as long as they come out null on the sutface. Second, for each of the automata in the FSAI
problem, translate it dircctly into a KIMMO automaton by pairing the original characters from
L with surface nulls. Also add columns for a/a and b/b, with entrics zero unless otherwise
specificd. Bumnp all of the state numbers up by two. Let the new start atate accept only a/a,

19A few restrictions on the problems are necessary in order to show membership in PSPACE. For details,
sce Garey and Johusou (1979:173.250f) and refercnices cited therein,

20The reduction can also be done without a and b, but they are included because the resulting reduction is
more reminiscent of ordinary processing problems in which the question arises of how many nulls to hypothesise
between characters,
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going to 3 (the old start state). Let only state 2 be a final state, but for every state that was
final in the original automaton, give it a transition to 2 on b/b.

Third, let the root lexicon of the dictionary component contain a lexicon entry for each
single character in £ U {a.b}. The continuation class of cach entry should send it back to the
root lexicon, except that the entry for b should list the word-final continuation class # instead.
Finally, take ab as the surface string for the KIMMO RECOGNITION problem. Surface a
will start up the translated versions of the original automata, which will be able to run freely
in between the @ and the b because the characters in I all get paired with surface nulls. If
there is some string that all of the original automata accept, that lexical string will send all of
the translated automata into a state where the remaining b is acceptable. On the other hand,
if the original intersection is empty, the b will never become acceptable and the recognizer will
not acccept the string ab.

This construction forms onc half of the PSPACE-completeness proof, but it is also nec-
essary to show that KIMMO RECOGNITION is no harder than problems in PSPACE. It
is suflicient to transform arbitrary KIMMO RECOGNITION problems into FSAI problems,
Given a recognition problem, first convert the dictionary component into a large automaton
that (i) constrains the lexical string in the same way the dictionary component does, pairing
lexical characters with surface wildcards, but (ii) allows nalls to be inscrted freely at the lex-
ical level, in case the other automata permit lexical nulls. The conversiqn can be performed
because the dictionary component is finite-state. Second, convert the input string into an
automaton as well. The input-string automaton should (i) constrain the surface string to be
exactly the input string, but (ii) allow surface nulls to be inserted freely. Third, expand out
all wildcard and subset characters in the automata, then interpret each lexical/surface pair
at the head of an automaton column as a single character in an extended alphabet. Given
this preparation, it is possible to solve the original recognition problem by solving FSAI for
the augmented set of automata. Since the input string is now encoded as an automaton,
the intersection of the languages accepted by all the automata consists of all the permissible
lexical--surface correspondences that reflect recognition of the input string. The intersection
will be nonempty — as FSAI tests — if and only if the input string is recognizable.

The PSPACE-completencss proof shows that if null characters are completely unrestricted,
it can be very hard for the recognizer to reconstruct the superficially null characters that may
lexically intervene between two surfuce characters. However, unrestricted aulls surely are not
needed for linguistically relevant KIMMO systems. Processing complexity can be reduced by
any restriction that prevents the number of possible nulls between surface characters from
getting too large. As a crude approximation to a reasonable constraint, the above reduction
conld be ruled out by forbidding entire lexicon entrics to come ont null on the surface.?! A
suitable restriction would make the KIMMO gencration and recognition problems only N P-
complete rather than PSPACE-complete.

21 Recall from footnote 18 that an eutry "0% in the dictionary is not the same as a dictionary entry that is
entirely deleted at the surface by the sutomata.
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6.3. The Intersection of Constraints

The null characters (0) that can appear in a KIMMO antomaton allow the recognizer to
advance without consuming any characters from the input word. For example, in analyzing the
word hoed as hoe+ed, the automata advance as if the surface string were ho00Oed (sce Karttunen
and Wittenburg, 1983:220), postulating surface nulls freely as required by the constraints of
the aystem. However, the interpretation of 0 as the empty string involves some subtlety when
multiple constraints are involved.

Internal to a KIMMO automaton, O is treated the same as any other character, but 0 is
effectively deleted at the interface to the surface string or the dictionary component. Abstractly
speaking, the trcatment of nulls by the KIMMO recognizer involves two steps: (i) null characters
are inscrted freely into the surface string to produce a form like hoOOed; (ii) this augmented
string is used to run the automata. Thus, a KIMMO automaton can be considered to define
both an internal constraint (relating the augmented strings with 0 characters inserted) and
an ezternal constraint (relating the strings as they stood before 0-insertion).

This distinction becomes important when there is more than one automaton in a KIMMO
system. The notion of “satisfying every constraint” could refer to intersecting cither the
snternal or the external versions of the constraints defined by the automata. If the external
languages are intersccted, different automata can disagree about the placement of nulls. (This
corresponds to interpreting null characters as ordinary empty strings (epsilons, ¢}, since the
number of occurrences of the empty string between any two characters js indeterminate.) On
the other hand, if the internal forms of the constraints are intersected, all the automata must
agree on the number of nulls and their positions.

The actual KIMMO system performs internal intersection of the constraints defined by the
automata. Ron Kaplan?? has pointed out that this subtle distinction in the interpretation of
KIMMO nulls has computational conscquences. If the various constraints of a KIMMO system
were subject to external rather than internal intersection, thus interpreting KIMMO nulls as
ordinary epsilons, then BIGMACHINE precompilation would not be generally possible,

Since BIGMACHINE precompilation produces a single large finite-state transducer as out-
put, the intersection operation that it imnplicitly itnplements must always map finite-state
constraints into finite-state constraints. External intersection does not have this property, and
thercfore BIGMACHINE precompilation would not be generally possible if external intersection
were used. Specifically, Kaplan has called attention to the following finite-state relations over
lexical-surface pairs:

A (a/b)*(0/c)*

and B = (0/b)*(a/e)*

Each of these relations is casy to encode in a KIMMO antomaton, but their external intersection

[l

ANDB = {a"/b"c"}

cannot be defined by any KIMMO automaton, large or amall, despitc its finite-state origins.

2K aplan’s remarks were made in a talk prescated to the Workshop on Finite-State Morphology, Center for
the Study of Language and hiformation, Stanford University, July 20- 30, 1985.
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This example makes crucial use of the fact that external interscction allows different
automata to disagree about the placement of nulls; under internal intersection (e.g. in the
current KIMMO system) no nontrivial lexical-surface pair satisfies both of the constraints. For
instance, A will reject the external string pair aa/bbec except as aa00/bbecc, while B will
reject it except as 00aa/bbee. Since internal intersection requires all automata to agree about
the placement of nulls, aa/bbbb will be rejected under internal intersection.

The computational consequences of the distinction between internal and external inter-
section become more severe when KIMMO systems aré generalized slightly. For example, if
KIMMO automata are gencralised to usc three levels instead of two, and if certain other small
changes are made, then the recognition problem becomes computationaly undecidable under
external intersection (Barton, 1985b).
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o 7. Improving KIMMO Dictionary Efficiency
.
:; One final matter remains. Despite the fact that navigation through the lexicons of the
dictionary component can account for quite a bit of backtracking in the current KIMMO system,
;‘ the previous sections gave little attention to that problemn. Instead, section 3.3.2 promised that
\ the dictionary component could be changed in such a way that most of the choice points would
2: be climinated. This section explains how.
A
< 7.1. Subdivisions of the Dictionary
;: Naturally, there would be no need to choose among alternative lexicons if the dictionary
'«:a were not subdivided. In the existing KIMMO systein, subdivisions arc nceded for two reasons.
:Q: First, the continuation-class mechanism is the only means for expressing co-occurrence restric-
t:' tions among roots and affixes, and a continuation class is a set of lexicons. Second, incorrect
;" dictionary search paths can be recognized and pruncd more quickly when suffixcs are stored
e separately from roots.
The existing continnation-class mechanism makes the lexicon the finest unit of discrimi-
: nation between suftixes. If a,z,y are dictionary entries such that the sequence az is possible
g but ay is not, this constraint will be impossible to capture unless z and y are listed in separate
" . lexicons; if they are in the same lexicon, it will be impossible for the continuation class of
m a to include z but not y. Thus the nced to express co-occurrence restrictions leads to the
K use of multiple Jexicons. For example, Karttuncn and Wittenburg (1983:224) must list -ed
! and ~er in separate lexicons because of such contrasts as doer/+doed. In the special case
K) of scparated dependencies, the weakness of the current continuation-class mechanism leads
:: to a large amount of duplicated structurc in the multiple lexicons that must be constructed
o (Karttunen, 1983:180).
Small lexicons are also advantagcous for pruning scarch, since it can become apparent
".c' . very carly that no acceptable suffix starts out with the letters at hand. For instance, if none of
h the suffixes that can attach to the current word start with a, it is pointless to search beyond
:l‘ an a in the input (ignoring spelling-change rules here). If the legal suflixes for the current
K class of word are stored in a scparate lexicon, the letter-tree version of the lexicon will not
" be scarched beyond an a. However, if they are listed with many other suffixes such as -able,
A the search will not be abortcd until later — possibly not until the end of a suffix, when the
» combinatory featurcs of the suffix can be checked.
Unfortunately, multiple lexicons slow analysis down quite a bit in the current version
::: of KIMMO. Each of the lexicons in a continuation class is scarched separately. The first few
1:, characters beyond a lexicon choice point tend to get reanalyzed several times, with that portion
- of the lexical-surface correspondence worked out afresh cach time. If z,y above are stems (N,
| V, ete.) instead of suflixes — that is, if a is a prefix — then the root lexicon becomes subdivided.
i« In such a situation, the scparate scarching of the different portions of the root lexicon becomes
: especially scrious. Much storage is also wasted (Karttunen and Wittenburg, 1983:221f).
N In somne cases, however. the current finite-state lexicon structure cannot capture the proper
B co-occurrence restrictions even if duplication and inefficiency can be tolerated. Prefixes gen-
crally apply ouly to words of particular classes, thus making it necessary to have scparate
?i %
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lexicons for the various classes of words involved. But since prefixes and suffixes can pro-
ductively forin new words of various classes (for instance, -ize foyms verbs), it may not be
possible for a lexicon to list themn all. Formally speaking, if both prefixes and suffixes (i) are
fully productive, (ii) can change the categories of words arbitrarily, und (iii) can attach to only
particular categorics of words, then separated dependencies can arise that exceed the power of
a finite-state lexicon structure. In such cases, context-free rules of some kind might be better
suited to the hierarchical word-structures that are involved. Alternatively, it might be prefez-
able to subdivide the problem by enforcing only crude finite-state combinatorial constraints
while figuring out the lexical-surface correspondence, then filtering the analyses in a more
sophisticated way afterward.

7.2. Merging the Lexicons

The number of separate lexicon searches can obviously be reduced if there is only one
lexicon. Roots and affixes can all be listed together, with the combinatory possibilities of
various elements indicated by a feature system. Such a feature system can be used whether or
not the existing finite-state dictionary framework is replaced with something more powerful.

Within the existing framework, each lexicon name can be interpreted as a feature; the
continuation class of cach entry is then taken to specify the possible lexicon features of its
imincdiate successor in the word. Alternatively, a more powerful framnework might be modelled
after the linguistic framework of Licber (1980). Context-free machinery of some kind could
implement the recovery of hicrarchical structure, the application of Lieber’s feature-percolation
conventions, and the enforcement of combinatory restrictions. Common grammar-processing
techniques could be used to predict at each boundary the set of permissible combinatorial
features (the continuation class) of the next segment of input.

As noted, however, merging the lexicons in this way has the disadvantage that it prolongs
some dictionary searches that would have failed early with more finely-divided lexicons. At
modest cost in time and space, this disadvantage can be eliminated by adding bit vectors to
the internal letter-tree form of the lexicon. The bit vector associated with a link in the letter
tree indicates which classes of words or affixes can be found in the subtreec below. Bit vectors
should also be associatcd with the outputs of the tree.

The bit-vector scheme makes it possible to scarch in parallel through all of the lexicons in
a continuation class. The implementation will no longer interpret a continuation class in terms
of the individual letter-trecs of several lexicons; instead. a continuation class will correspond
to an encoded set of lexicon names for use in descending the single merged letter-tree. Before
descending a branch (or using an output), it is necessary to check whether there is a non-null
intersection between the lexicons comprising the desired continuation class and the lexicons
accessible down the branch. On many computers, this test can be carried out in a single
instruction, if the number of lexicons in the dictionary is small (e.g. < 32). Search should
terminate if the intersection is null. With the “virtual” split lexicons provided by the bit-vector
scheme, a failing scarch can terminate just as carly in the lexical string as it will with lexicons
that have individual letter-trees: Figure 16 shows an idealized illustration. In an actual system,
the dictionary would have more fincly divided lexicons than N and V., especially for suffixes.

An implementation of this dictionary scheme was used to generate the traces shown in
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Figure 16: If separate letter trees for nouns and verbs are merged as on the left, failing searches may
be prolonged unnecessarily. Assuming that no nouns are accessible down the kil... branch of the
merged tree, it is uselesa to traverse that branch if only a noun is acceptable in the current context.
However, the fruitlessness of the branch may not be apparent until the end of an entry (e.g. kill)
is reached and category features are available. In the latter tree on the right, each link has been
augmented with a bit-vector that indicates the classes of entries that are accessible down the link.
The bit-vectors enable the system to terininate a failing wearch without going any further down the
trec than it would with unmerged lexicons. In this case, the kil... subtrec would not be searched
because the intersection of {V} and {N} is null.

Figure 3 and succeeding figures. Without the merged dictionary, the recognizer for English
Jocates a suffix in the continnation class /V by doing a separate letter-tree descent for each of
the lexicons P3, PS, PP, PR, I, AG, and AB. With the merged dictionary, the recognizer needs
only one letter-tree descent in the virtual lexicon (/V) = {P3,PS,PP,PR,I,AG}, thus reducing
the number of steps necded to analyzc an input. Fincly divided lexicons (hence continuation
classes with several members) are typically necessary for capturing co-occurrence restrictions
even in approximate form, and consequently the merged dictionary alinost always speeds up
recognizer operation. Finally, cven though it takes extra space to augment links and outputs
with bit-vectors, the merged dictionary can also save space by sharing structure among what
would otherwise bé separate letter trees. []
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